Makine Öğrenmesi Algoritmalarını Kullanarak Rüzgar Enerjisi Üretimi Tahmini
نویسندگان
چکیده
Renewable energy becomes progressively popular in the world because renewable resources such as solar, geothermal, wind are clean, inexhaustible and come from natural sources. Wind is one of most significant it plays a key role generation electricity. Thus, accurate power estimation crucial to deal with challenges balance trading, planning, scheduling decisions strategies generation. This study proposes prediction model solve real-life problem sector by accurately estimating amount production per hour next 24 hours applying machine learning (ML) techniques using historical data weather forecasting reports. In proposed approach, first, an unsupervised ML method (i.e., K-Means clustering algorithm) applied group into meaningful clusters; then, these clusters accepted new feature values added dataset enlarge it; finally, supervised regression) performed for prediction. compares nine algorithms: K-Nearest Neighbors, Support Vector Regression, Random Forest, Extra Trees, Gradient Boosting, Ridge Least Absolute Shrinkage Selection Operator, Decision Tree, Convolutional Neural Network. The aim this investigate success different algorithms on real-world turbines propose methodology benchmark various choose final
منابع مشابه
Polarization Measurement of High Dimensional Social Media Messages With Support Vector Machine Algorithm Using Mapreduce
Bu çalışmada önerilen yöntem kullanılarak, Eşle/İndirge (MapReduce) tekniği ile özellikle TFxIDF yöntemi gibi yüksek boyutlu veri setlerinin, veri madenciliğinde oldukça sık kullanılan makine öğrenme algoritmalarından olan Destek Vektör Makinesi (DVM) ile uygulanabilirliğini anlatılmaktadır. Literatürde, DVM sınıflandırma algoritması, makine öğrenmesi yöntemleri arasında genelleştirme özelliği ...
متن کاملKisa Donem Uzam-Zamansal Trafik Tahmini
The studies carried out with the objective of minimizing the effects of congestion, delay and environment problems on the transportation network have gained increasing importance in the last years. Among these studies, short-term traffic flow and average vehicle speed forecasting methods have come into prominence due to their easy implementations, efficient usage on different areas and cost-eff...
متن کاملVeri Madenciliğinde Özellik Seçim Tekniklerinin Bankacılık Verisine Uygulanması Üzerine Araştırma ve Karşılaştırmalı Uygulama
Özet. Günümüzde pek çok kurum mevcut verilerini ilişkisel veri tabanlarında saklamakta ve modellemelerini bu verileri kullanarak gerçekleştirmektedir. Kurumsal veri modellerinin karmaşıklığı, veriye ait özelliklerin çokluğu ve veri miktarının fazlalığı, veri üzerinde her türlü analizin (kümeleme, regresyon, vb.) yapılmasını zorlaştırmaktadır. Bu nedenle veri kümeleri üzerinde tahmin gücü yüksek...
متن کاملYüksek Performanslı Sıvı Kromatografisi Kullanarak Tavşan Plazmasında İbuprofenin Tayini
The aim of the present study was to develop and validate a procedure based on high-performance liquid chromatography (HPLC) for determination of ibuprofen in rabbit plasma. Separation of ibuprofen and naproxen (internal standard, IS) was achieved on an Ace C18 column (5 μm, 250x4.6 mm i.d.) using UV detection with λ=225 nm. The mobile phase consisted of 20 mM phosphate buffer (pH 7) containing ...
متن کاملYazilim Gelistirmede Erken Asamalarda Toplanan Verinin Hata Tahmini Performansina Etkisi
Defectiveness of the software can be seen as one of the most important factors that address software quality. Software defect prediction models enable to observe the defectiveness of the software as well as to estimate the forward looking trend of defects. Most defect prediction models are built according to the coding phase based metrics. Therefore, chances for taking preventive actions early ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fen-mühendislik dergisi
سال: 2021
ISSN: ['1302-9304', '2547-958X']
DOI: https://doi.org/10.21205/deufmd.2021236709