Makine Öğrenmesi Algoritmalarını Kullanarak Rüzgar Enerjisi Üretimi Tahmini

نویسندگان

چکیده

Renewable energy becomes progressively popular in the world because renewable resources such as solar, geothermal, wind are clean, inexhaustible and come from natural sources. Wind is one of most significant it plays a key role generation electricity. Thus, accurate power estimation crucial to deal with challenges balance trading, planning, scheduling decisions strategies generation. This study proposes prediction model solve real-life problem sector by accurately estimating amount production per hour next 24 hours applying machine learning (ML) techniques using historical data weather forecasting reports. In proposed approach, first, an unsupervised ML method (i.e., K-Means clustering algorithm) applied group into meaningful clusters; then, these clusters accepted new feature values added dataset enlarge it; finally, supervised regression) performed for prediction. compares nine algorithms: K-Nearest Neighbors, Support Vector Regression, Random Forest, Extra Trees, Gradient Boosting, Ridge Least Absolute Shrinkage Selection Operator, Decision Tree, Convolutional Neural Network. The aim this investigate success different algorithms on real-world turbines propose methodology benchmark various choose final

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarization Measurement of High Dimensional Social Media Messages With Support Vector Machine Algorithm Using Mapreduce

Bu çalışmada önerilen yöntem kullanılarak, Eşle/İndirge (MapReduce) tekniği ile özellikle TFxIDF yöntemi gibi yüksek boyutlu veri setlerinin, veri madenciliğinde oldukça sık kullanılan makine öğrenme algoritmalarından olan Destek Vektör Makinesi (DVM) ile uygulanabilirliğini anlatılmaktadır. Literatürde, DVM sınıflandırma algoritması, makine öğrenmesi yöntemleri arasında genelleştirme özelliği ...

متن کامل

Kisa Donem Uzam-Zamansal Trafik Tahmini

The studies carried out with the objective of minimizing the effects of congestion, delay and environment problems on the transportation network have gained increasing importance in the last years. Among these studies, short-term traffic flow and average vehicle speed forecasting methods have come into prominence due to their easy implementations, efficient usage on different areas and cost-eff...

متن کامل

Veri Madenciliğinde Özellik Seçim Tekniklerinin Bankacılık Verisine Uygulanması Üzerine Araştırma ve Karşılaştırmalı Uygulama

Özet. Günümüzde pek çok kurum mevcut verilerini ilişkisel veri tabanlarında saklamakta ve modellemelerini bu verileri kullanarak gerçekleştirmektedir. Kurumsal veri modellerinin karmaşıklığı, veriye ait özelliklerin çokluğu ve veri miktarının fazlalığı, veri üzerinde her türlü analizin (kümeleme, regresyon, vb.) yapılmasını zorlaştırmaktadır. Bu nedenle veri kümeleri üzerinde tahmin gücü yüksek...

متن کامل

Yüksek Performanslı Sıvı Kromatografisi Kullanarak Tavşan Plazmasında İbuprofenin Tayini

The aim of the present study was to develop and validate a procedure based on high-performance liquid chromatography (HPLC) for determination of ibuprofen in rabbit plasma. Separation of ibuprofen and naproxen (internal standard, IS) was achieved on an Ace C18 column (5 μm, 250x4.6 mm i.d.) using UV detection with λ=225 nm. The mobile phase consisted of 20 mM phosphate buffer (pH 7) containing ...

متن کامل

Yazilim Gelistirmede Erken Asamalarda Toplanan Verinin Hata Tahmini Performansina Etkisi

Defectiveness of the software can be seen as one of the most important factors that address software quality. Software defect prediction models enable to observe the defectiveness of the software as well as to estimate the forward looking trend of defects. Most defect prediction models are built according to the coding phase based metrics. Therefore, chances for taking preventive actions early ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fen-mühendislik dergisi

سال: 2021

ISSN: ['1302-9304', '2547-958X']

DOI: https://doi.org/10.21205/deufmd.2021236709